Oil Fields in Railroad Valley Nevada

Part One

by Louis C. Bortz, #1698

This article is from the Denver Chapter and is the second in a new series submitted by SIPES Members and Chapters. Part Two will be printed in November 2015.

INTRODUCTION

Nevada’s first oil field, Eagle Springs, was discovered by Shell Oil Company in Railroad Valley in 1954. What led Shell to find an oil field in a remote part of the Basin-and-Range Province in Nevada? Possibly, it was because my friend, Walter Youngquist, in 1946 discovered the first “free oil” in Nevada near Duckwater northwest of Railroad Valley. Walt found the oil in cavities of goniatites within the Mississippian Chainman shale which suggested a probable oil source for the area. The Chainman shale was later confirmed by the USGS and others to be the best oil source rock in this area, and most of the oil in Railroad Valley is typed to be Chainman oil.

Walt sent the following letter to me when I asked him to summarize his “discovery of oil” in Nevada.

(Continued on Page 23)

This summer’s SIPES National Convention held in Deer Valley, Utah was an incredible experience beyond all of our expectations. Held at the five-star Stein Eriksen Lodge, the amenities were fabulous, the view spectacular, and more than 170 SIPES Members and guests enjoyed a wonderful gathering of colleagues and friends in perfect weather at this Wasatch Mountain resort. The technical programs, as well as the field trips and social events, were very well-attended, and kudos are due to our Austin and San Antonio Chapters, and to the SIPES National office staff for organizing and carrying off one of the best conventions in many years. I personally can’t wait to get back up there and do some more fly fishing in the cool waters of the Provo River. Special thanks to Donna Balin, Tom Ewing, Ward Davenport, Bill Walker, Executive Director Diane Finstrom and the SIPES National office staff for their tireless efforts.

The convention and accompanying board of directors’ meetings for both SIPES and the SIPES Foundation marked the end of

(Continued on Page 12)
The following reports on national, state, and environmental information were prepared by SIPES Vice President of National Energy Pat Nye, and Environmental Committee Chair John Kimberly. The views and opinions expressed are those of the authors. Some of the information presented is in the public domain and is available from a variety of sources; other references were selected by the authors, and are noted in their reports.

NATIONAL ENERGY

On Monday, July 13, 2015 the Iran nuclear accord has been accepted and many were surprised to find that oil prices didn’t immediately fall off of a cliff. The respite was brief, as the sell-off was postponed for later in the week. Prices retreated from the resistance level of $53.50 to settle closer to an even $50.00 per barrel of West Texas Intermediate despite an inventory drawdown of close to 5 million barrels and a refinery utilization rate at the highest point this year. On July 10, 2015 the International Energy Agency said that the bottom might still be ahead with surges of oil supply adding more than 500,000 barrels a day from both OPEC and non-OPEC countries. Although the oil prices dropped, the market’s initial reaction to the Iran news was relatively benign citing that:

1) traders had anticipated the agreement to go through
2) it will take months for Iran’s oil to ramp up production
3) it will take months to obtain Congressional approval and
4) OPEC competition will slow the marketing of Iranian oil. Throwing in Greece’s rejection of a debt restructuring bailout sets up a perfect storm of uncertainty for oil pricing in the near future

But wait, there still remains a good bit of optimism out there. An interesting article by Dan Steffens, president of Energy Prospectus Group points to several variables that may predict higher oil prices later this year:

1) Oil consumption to increase by 1 million barrels of hydrocarbon liquids per day
2) Both Steffens and Raymond James and Associates concur that the International Energy Agency (IEA) estimate of global oil demand and the U.S. Department of Energy’s Energy Information Agency’s (EIA) weekly reporting of U.S. oil supply are “grossly” out of line
3) Raymond James and Steffens point out that the IEA and EIA underestimated oil supply and demand during 2008-09 and believe this is occurring once again. Over the past fifteen years there has been an upward revision of the annual demand by EIA by 700,000 barrels of oil per day. In addition, EIA has shown a continued rise in U.S. oil supply while there has been a tremendous drop in the rig count and steep production declines for the shale plays.

Market reactions carry a big stick. Momentum and sentiment can push markets past their logical and fundamental price points. Prior to the collapse in crude prices in 2008-09, the West Texas Intermediate spot market blew through $140 per barrel. This was an unlikely reflection of the underlying supply and demand picture. The oil markets’ rationale reflected the global fears that supply shortages were a real possibility and a tangible cause for concern. The involvement of the big investment bank’s proprietary trading shops combined with their ability on the opposite side to pull institutional and retail-class investors into long positions in oil, guaranteed a large pillow of money to drive oil’s bid through a logical ceiling. In the post “Dodd-Frank” and “Basel III” financial climate, most of the big trading desks have disbanded and have been replaced by a new breed of private commodity houses that hardly have the appetite for retail marketing. Perhaps the lack of institutional investment in oil has broadened the stroke of speculation.

As previously mentioned, demand for crude continues to grow and markets are always looking forward. Will our reactions to the price of oil affect our ability to plan for the future? Will the massive drop in capital expenditures and rig counts result in a supply crunch further down the (Continued)
road? According to Andrew Hall, one of the most successful oil traders of all time, “Today’s surplus is only 2% higher than global oil consumption, and it will have dissipated by year’s end.” The takeaway from this simple statement comes into focus by winding the clock back thirty years. In 1986, the last time a demand-based rally sparked from prolonged low oil prices, OPEC’s spare capacity was nearly 25%. The amount of spare capacity that can be called upon today is subject to debate, but the consensus is that it is nowhere near levels enjoyed in the past. U.S. shale, Canadian tar sands, and ultra-deep water drilling are part of the “new normal” in today’s energy matrix. Current price levels discourage investment for all but the most financially robust of these projects. The limbo created by volatile commodity markets threatens jobs, investment, and ultimately the world’s supply of hydrocarbon-based energy forms.

Here on the Gulf Coast, we have enjoyed the tail winds of a shale boom in our backyard. But over the years, production results and changing commodity prices have condensed the economic sweet spots of the Eagle Ford Shale into a fraction of the area which was once considered viable. Perhaps this is the reality check we need; a necessary reminder that our natural resources are not finite and that our national energy policy should be carefully constructed to deal with a realistic picture of our reserve potential.

Mexico - Solution to the Natural Gas Glut?

Mexico’s Federal Electricity Commission has tendered a new round of bidding for 24 infrastructure projects expected to cost nearly $10 billion in aggregate investment. Perhaps the most interesting to U.S. natural gas producers is a proposed underwater pipeline (“Marino”) carrying natural gas from South Texas to Tuxpan, Mexico. While issues regarding the feasibility of the estimated $3 billion dollar project abound, Mexico is eyeing a completion date in late 2018 with an expected capacity rate of 2.6 billion cubic feet of natural gas per day. Coupled with the “Los Ramones” natural gas pipeline project that completed phase one in 2014, Mexico’s national “gasification” strategy seems to be on solid footing. “Los Ramones” is designed to deliver 2.1 billion cubic feet of natural gas per day from Agua Dulce, Texas ultimately to Guanajuato, Mexico. The transporting of natural gas from the interior of the United States to our southern neighbor should have an impact to reduce some of the excess natural gas in the U.S. market.

(Continued)
In addition, Mexico has opened up its oil industry to international and domestic competition for the first time in 80 years. At the time of writing, Mexico’s first round of auctions for 14 blocks in the Gulf of Mexico has come and gone with tepid fanfare. Next up is a September auction for a shallow Gulf of Mexico field with existing production history followed by an auction of promising onshore blocks in December. Time will tell if the Mexican government is offering attractive concessions enough to entice those with the experience to develop Mexico’s vast resources. In the meantime, Mexico is relying on U.S. imports to stabilize their energy needs.

Senate Energy and Natural Resources Committee

At the capitol, the Senate Energy and Natural Resources Committee held a series of four hearings for a new energy bill that includes energy efficiency, infrastructure, supply and accountability as part of a larger energy legislative package. Focus on our aging electrical power system with the integration of smart grid technologies would help on the reliability of our electrical supplies throughout the U.S. With abundant natural gas in North America, a concerted movement towards natural gas electrical generation is our future. Replacement of coal-fired power plants has been an ongoing task and incentivized by the health risks from pollution and reliability. Coal-fired electrical power plants reportedly cause more than 50,000 premature deaths in the U.S. each year, mostly from east-central and in the Midwest where power plants burn high-sulfur coal. Natural gas is our country’s best option as the replacement fuel, and lobbying efforts should be amplified while the energy costs are relatively inexpensive and supplies plentiful.

Replacing natural gas for coal will not be easy, but never cheaper than today. We should support Congress and its efforts to revitalize our Nation’s energy policies and encourage other nations to commit as well. Worldwide more than 1.3 billion people are without access to electricity while we are blessed with the ingenuity and resources to develop next generation electrical integration. We take for granted where we are at this moment in time and must act upon new technology, utilize our natural resources more efficiently and plan smarter for the generations to come.

(Continued)
Engineering Solutions Utilizing Frac Water

Amongst myriad challenges and obstacles faced by the North American shale industry, the problem of a growing water shortage looms large. The issue is yet another bullet in the revolver for the constant critics of shale. A new solution is currently in the testing phase, championed by the University of North Dakota and Oklahoma-based Continental Resources to study the economic viability of harnessing geothermal technology to convert produced water from fraced wells into an electricity source. The concept involves piping produced water from up to a mile and a half away to a central generator facility housed in a 40-foot container. The pilot program hopes to model electricity generation and extrapolate potential outcomes of megawatt capacity if the technology could, in fact, be replicated on a larger scale. Will Gosnold, professor of geophysics at the University of North Dakota, opines “This is what we would call a low-temperature geothermal demonstration project. The idea is to see if this actually can be done and done economically.” Ultimately, wells would be joined in a circuit contributing enough water to a central generator to produce several megawatts. Whether or not operators will adopt potentially costly energy efficiency measures in the current low commodity price environment remains to be seen. Recycling of frac water is a necessary step in water conservation that has been magnified in the U.S. particularly California.

<table>
<thead>
<tr>
<th>Years Built</th>
<th># of Units</th>
<th>Total Capacity (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005-2009</td>
<td>21</td>
<td>6,785</td>
</tr>
<tr>
<td>2000-2004</td>
<td>13</td>
<td>1,382</td>
</tr>
<tr>
<td>1995-1999</td>
<td>24</td>
<td>4,372</td>
</tr>
<tr>
<td>1990-1994</td>
<td>67</td>
<td>8,638</td>
</tr>
<tr>
<td>1985-1989</td>
<td>102</td>
<td>23,734</td>
</tr>
<tr>
<td>1980-1984</td>
<td>117</td>
<td>56,105</td>
</tr>
<tr>
<td>1975-1979</td>
<td>125</td>
<td>55,879</td>
</tr>
<tr>
<td>1970-1974</td>
<td>137</td>
<td>66,466</td>
</tr>
<tr>
<td>1965-1969</td>
<td>158</td>
<td>41,656</td>
</tr>
<tr>
<td>1960-1964</td>
<td>157</td>
<td>25,310</td>
</tr>
<tr>
<td>1955-1959</td>
<td>209</td>
<td>28,883</td>
</tr>
<tr>
<td>1950-1954</td>
<td>213</td>
<td>17,518</td>
</tr>
<tr>
<td>1940-1949</td>
<td>93</td>
<td>2,583</td>
</tr>
<tr>
<td>1930-1939</td>
<td>20</td>
<td>132</td>
</tr>
<tr>
<td>1920-1929</td>
<td>10</td>
<td>69</td>
</tr>
<tr>
<td>Total</td>
<td>1,466</td>
<td>339,609</td>
</tr>
</tbody>
</table>

In Summary

Meanwhile on the other side of the world, warm waters have arrived on the Gulf Coast and plenty of trout and redfish can be found if one works the tidal flats and drop offs. Even my dog Ellie, a blue tick coon hound, likes the fishing action. Although she has an excellent nose, it’s interesting that like the EIA and IEA she doesn’t sniff a thing until AFTER the fish are in the boat!!

■ ENVIRONMENTAL REPORT

It was an honor when Craig Smith asked me to fill the position of SIPES Environmental Committee Chair, a post formerly ably handled by Bill Finley. Fortunately for me, Bill has agreed to help me in this role. Since 2010 I have headed the Environmental Affairs Committee for the Midland Chapter, fulfilling an interest that I have pursued for the past twenty years.

My involvement in environmental matters consists of studying the findings of environmental research, not in doing the research itself. Out of these studies, the objective is always to find the truth. As SIPES Environmental Committee Chair I will continue to search the literature for facts that will help us understand our environment and mankind’s influence on it. Concentration will be on the science of the subject rather than the politics, although the two sides unfortunately become so enmeshed that one cannot totally separate them.

The following essay by geologist Betsy Gorisch on the scientific method and how it relates to the subject of anthropogenic global warming (AGW) is well-stated and fundamental to our scientific approach to the environment. Enjoy this clearly presented paper.

“Anthropogenic Global Warming and the Scientific Method” was originally published online by the American Thinker (http://www.americanthinker.com) on November 25, 2014. It is reprinted with permission from the American Thinker Editor. The author, Betsy Gorisch, is a professional geologist with an interest in current events.

Anthropogenic Global Warming and the Scientific Method

by Betsy Gorisch

Anthropogenic Global Warming (AGW) alarm has been with us for a good while, now. The matter seems to become more contentious, rather than less, over time. Unhappily, as a result
of the mediocre quality of science education, many people do not know how to evaluate either a scientific hypothesis in general, or AGW in particular — and irrespective of whatever anyone might think, because of how it is framed and evaluated, AGW is no more than a hypothesis.

Science is about ruling things out. Any good scientific hypothesis will make predictions about the natural world — ideally, it will predict at least one natural effect whose existence cannot be caused by anything other than the hypothesis being tested. Observations are then made to acquire evidence, and the evidence is evaluated against the hypothesis’s predictions. Evidence can either rule the hypothesis out or not; if the evidence differs from the hypothesis’s predicted effects, then the hypothesis is wrong and is considered to be ruled out, or falsified. That which has not been ruled out by evidence remains possible. If enough confirmatory evidence is accumulated, the hypothesis is elevated to the status of a theory. Scientific Method is, conceptually, no more complicated than that.

Karl Popper, the great philosopher of science, used a simple observational experiment to illustrate the scientific method’s requirement of falsifiability — the requirement that a hypothesis be stated in such a way as to allow its testing against evidence with a view towards ruling it out. He noted that most people had once assumed that all swans are white. This assumption was based on the observation, over time, of uncounted numbers of white swans — and each such observation was taken as evidence supporting the assumption. However, there came a time when a black swan was found in Australia, and its discovery served to disprove the assumption that all swans are white. This example is used to illustrate the requirement for falsifiability. Popper understood that you would not test the hypothesis that all swans are white by undertaking a search for white swans — because no matter how many white swans you found, you would neither have proven, nor even properly tested, the hypothesis. Instead, you must mount an intensive search for a single non-white swan. If you found even one of those, you would have ruled the hypothesis out. Alternatively, and without finding a non-white swan, it remained viable — but because there remained the possibility of a single undetected non-white swan, it could not be regarded as proven.

"Models are essentially used as predictive tools, so they are only as good as the information upon which they are constructed."

Einstein’s Theory of Special Relativity provides an excellent real-world scientific example of evaluation by falsifiability. The Special Theory makes unique predictions about gravity’s effect on light’s behavior in a vacuum that, as far as anyone knows, could be accounted for by no phenomenon other than that assumed in the theory. When specifically tested for during a total eclipse of the sun in 1919, the gravitational effect Einstein’s theory predicted was both detected and measured to equal precisely his theory’s prediction. Special Relativity was hence verified — although, again, it is not regarded as proven. Instead, it remains possible in the absence of having been falsified by evidence. Now, it is true that Special Relativity is, like other theories, commonly accepted, and spoken of, as having been proven. However, that is merely a shorthand way of saying that it currently has no credible competition as an explanation of the phenomenon it addresses.

The AGW hypothesis that so many people claim accounts for what is essentially pretend global warming has never been treated this way. Initially, its proponents engaged in a search for supporting evidence: Elevated average annual temperatures, local glacial retreats, elevated-temperature indicators in proxy systems such as tree-ring records, measurable coincident increases in atmospheric CO₂ concentration, and so on — a search for white swans. But these efforts ignored, and failed even to seek, either any alternative explanations or evidence that would have ruled the hypothesis out. AGW has failed the predictions test again and again; any true scientific hypothesis with so poor an evidence-based evaluation record would have been scrapped by now. Instead, its proponents elevated it to the status of a theory and, ignoring the fact that climate changes continually, renamed it “climate change.”

No other potential causes of AGW have ever been investigated and ruled out. There must be at least one, because evidence shows that there have been times in the pre-human geological past when conditions were warmer and there was no glaciation at all anywhere on Earth. We also know, as a result of ice-core studies, that CO₂ has generally been a lagging indicator — that is, atmospheric CO₂ concentrations are documented to have increased after, rather than before, atmospheric temperature increases.

Nevertheless, its believers treat AGW as verified, and simply alter its components and predictions to conform to evidence. When the predicted warming did not occur and snows continued to fall during London winters even though it was predicted that they would fail, for example, or when polar ice sheets expanded even though the theory has predicted that they would melt away, the hypothesis should be considered to have been ruled out by evidence. However, its proponents still treat AGW as though it were true. Otherwise-reputable scientists employ variations on several approaches to their falsification conundrum. The first of these approaches, the use of
models, is a legitimate tool in particular scientific applications. Others amount to attempting to fudge the hypothesis to make it match evidence in an unscientific rearguard action.

Models are essentially used as predictive tools, so they are only as good as the information upon which they are constructed. If there are any unknown components in the modeled system, then the model’s predictions will, almost by definition, be unreliable. In the case of a system both as complex and incompletely understood as Earth’s atmosphere, the model’s construction will essentially be required to include untested, incomplete, and/or unproven function assumptions and data. In such a case, the problems and pitfalls of using these models to construct governing policies quickly become self-evident:

People trying to rely on the models essentially cannot know what they are doing. When, for example, their model does not predict their real-world observations, they tweak it until it does — which introduces errors-by-expectation into both output and the policies based upon it. These errors increase in magnitude, and therefore in effect, in a non-linear fashion directly proportional both to the size of the system and to the modeled outputs.

AGW’s predictions are not being reliably confirmed by observations. When stasis and/or cooling occur rather than warming — as has been the case over the last decade-and-a-half — atmospheric scientists fudge interpretations by saying that if it is cool, well, that is just weather; if it is warm, though, that is climate. Alternatively, they claim AGW predicts the cooling — as, for example, with the recent polar-vortex outbreaks. However, a theory that predicts everything predicts nothing — because a theory that predicts everything cannot be falsified through testing; nothing will serve to rule it out.

Scientists have also approached the unaccountable stasis and/or cooling by going around and searching for "the missing heat" that their theory assumes exists and claims has already built up. But this is not a search that would test the theory. It is a search that assumes the theory to be true — it begs the question. Further, if the search detects the sought evidence, no one tries to rule out any possible causes other than AGW, assuming instead that if the evidence exists, there are no other possible causes.

In short, the AGW — cum — “climate change” debate is not about a hypothesis — cum — theory. Even though no one has investigated it with a view towards falsifying it, evidence has ruled it out repeatedly. It has no useful scientific applications because it has been broadened to predict all possible observations — thereby predicting nothing at all.
Society of Independent Professional Earth Scientists

Advertising and Sponsorship Order Form

SIPES 53rd Annual Meeting & 2016 Convention

AUGUST 1-4, 2016 • SAN DIEGO, CALIFORNIA

2016 CONVENTION ADVERTISING RATES

- Business Card (2” h x 3.5” w) .. $60
- Quarter Page (5” h x 3.5” w) ... $120
- Half Page (5” h x 7” w) ... $200
- Full Page (10” h x 7.5” w) ... $350
- Inside Front Cover (Color) ... $750
- Inside Back Cover (Color) .. $750
- Outside Back Cover (Color) ... $1,000
- Mobile App Splash Screen .. $1,500
- Attendee Wallet Ad ... $1,500

Your ad will appear in the 2016 Convention registration book, the program book, and the 2016 Membership Directory DVD.

2016 CONVENTION SPONSORSHIP RATES

- Silver Sponsor ... $500
- Gold Sponsor ... $1,000
- (Gold Sponsors receive one complimentary convention registration)
- Platinum Sponsor ... $2,000
- (Platinum Sponsors receive one complimentary convention registration, a complimentary 1/2 page ad, and the opportunity to include advertising materials in the convention registration packets)
- Emerald Sponsor ... $4,000
- (Emerald Sponsors receive two complimentary convention registrations, a complimentary full page ad, the opportunity to include advertising materials in the convention registration packets, and other forms of recognition)
- Diamond Sponsor ... $8,000
- (Diamond Sponsors receive the same benefits as Emerald Sponsors, plus additional perks)

Sponsor company names and logos will be included on the SIPES website (www.sipes.org).
Names can be hyperlinked to company webpages or to an e-mail form. Company names and logos will be printed in the convention registration and program books, and on a banner that will be displayed at all convention functions.
Sponsors may also choose to host or co-host a convention event.

Circulation: SIPES Members, Industry Customers, Individuals Responsible for Directing Purchases of Goods and Services
Deadline for Inclusion: February 1, 2016 • Publication Dates: April & August 2016 • Ad Format: Camera-ready or digital

ORDER FORM & PAYMENT OPTIONS - Please Circle Your Selection

- Business Card
- Quarter Page
- Half Page
- Full Page
- Cover Page
- Mobile App Ad
- Attendee Wallet Ad
- Silver Sponsor
- Gold Sponsor
- Platinum Sponsor
- Emerald Sponsor
- Diamond Sponsor
- Contact:
- Telephone:
- City: __________________ State: ______ Zip Code: ____________ Fax: ________________
- Ad Size: __________________ Amount Enclosed: __________ E-Mail: __________________
- Payment Information: Please Circle Form of Payment
- Make Checks Payable to: SIPES 2016 Convention
- __ Payment Enclosed
- __ Bill Me*
- __ VISA
- __ MasterCard
- __ Discover
- __ American Express

(*Payment must be received by February 1, 2016 for inclusion in publication)

CREDIT CARD INFORMATION

- Credit Card No.: __________________ Expiration Date: ____________
- Billing Address and Zip Code: __________________
- Name on Card: __________________ Signature: __________________

Mail or Fax this order form with copy of ad/business card to: SIPES, 4925 Greenville Ave., Suite 1106, Dallas, Texas 75206
Phone: 214-363-1780 Fax: 214-363-8195 E-mail: sipes@sipes.org
In accordance with the SIPES Constitution, By-Laws & Code of Ethics, the following announcement of new members unanimously approved by the SIPES Membership Committee during the last quarter is printed below.

Any member in possession of information which might possibly disqualify an applicant is asked to submit this information to the secretary of the society (Michael L. Jones) within thirty days of this publication. To be considered, this information should be in writing and bear the writer’s name. If this information is received within thirty days after the publication of the applicant’s name, the SIPES Board of Directors must reconsider its previous approval of the applicant. The board’s action, after consideration of such new information, shall be final.

Douglas H. McGinness II, National Membership Committee

<table>
<thead>
<tr>
<th>SIPES No.</th>
<th>Name</th>
<th>Chapter</th>
<th>Sponsors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3418</td>
<td>William C. Pearson</td>
<td>Denver</td>
<td>L. Bortz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. Applegate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T. Stander</td>
</tr>
<tr>
<td>3419</td>
<td>John C. Horne</td>
<td>Denver</td>
<td>T. Stander</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L. Bortz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. Wright</td>
</tr>
<tr>
<td>3420</td>
<td>Thomas H. Shaw</td>
<td>Houston</td>
<td>R. Hickman</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>K. Joern</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B. Tyner</td>
</tr>
<tr>
<td>LTD</td>
<td>James C. Bloomquist</td>
<td>Houston</td>
<td>G. Marion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M. Helsinger</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T. Stanislav</td>
</tr>
<tr>
<td>3421</td>
<td>Glen B. Handey, Jr.</td>
<td>Houston</td>
<td>Reciprocal DPA</td>
</tr>
<tr>
<td>LTD</td>
<td>Russell P. Richards</td>
<td>Midland</td>
<td>Reciprocal DPA</td>
</tr>
<tr>
<td>3423</td>
<td>Ronald W. Crockett</td>
<td>Houston</td>
<td>S. Peppiatt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. Allen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B. Bowen</td>
</tr>
<tr>
<td>3424</td>
<td>Cheryl E. Desforges</td>
<td>Houston</td>
<td>Reciprocal DPA</td>
</tr>
<tr>
<td>3425</td>
<td>Richard L. Nagy</td>
<td>Houston</td>
<td>Reciprocal DPA</td>
</tr>
<tr>
<td>3426</td>
<td>David C. Stevens</td>
<td>Houston</td>
<td>B. Howard</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L. Raiden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A. Jurasin</td>
</tr>
</tbody>
</table>
2015-2016 SIPES CORNERSTONE GROUP
Many thanks to the members listed below for their continuing support of our society

Oil Finder – $1200
Wilbur C. Bradley — Wichita, KS
William C. Burkett — Midland, TX
Stewart Chuber — Schenectady, TX
Ralph J. Daigle — The Woodlands, TX
Kenneth J. Huffman — Mandeville, LA
Stephen D. Reynolds — Denver, CO
Eugene R. Sidwell — Amarillo, TX
Thomas A. Smith — Austin, TX
Paul M. Strunk — Corpus Christi, TX

Driller – $750
Michael N. Austin — Westminster, CO
William D. Bennett — Fredericksburg, TX
Dennis M. Gleason — Arlington, TX
Walter S. Light, Jr. — Houston, TX
Charles A. Lundberg III — Dallas, TX
Marc D. Maddox — Midland, TX
D. Craig Smith — Midland, TX

Prospector – $500
Avinash C. Ahuja — Corpus Christi, TX
Craig F. Anderson — Houston, TX
Thornton F. Anderson — Wichita, KS
Donna F. Balin — San Antonio, TX
James F. O'Connell — Amarillo, TX
Wayne D. Miller — Midland, TX
Christophe G. Mazzini — Dallas, TX
Brian F. Maxted — Dallas, TX
Robert H. Marshall — Houston, TX
Peter MacKenzie — Worthington, OH
Bobby P. Long — Houston, TX
Robert C. Leibrock — Fort Worth, TX
John D. Kullman — Midland, TX
Albert R. Hensley — Rockwall, TX
Edward W. Heath — Durango, CO
Stephen P. Hartzell — Houston, TX
Henry R. Hamman — Houston, TX
James P. Evans III — Franklin, LA
Robert B. Ferguson — San Juan Capistrano, CA
David R. Fox — Missouri City, TX
Roger A. Freidline — Midland, TX
William T. Goff III — Littleton, CO
Henry R. Hamman — Houston, TX
Stephen P. Hartzell — Houston, TX
Edward W. Heath — Durango, CO
Albert R. Hensley — Rockwall, TX
John D. Kullman — Midland, TX
Robert C. Leibrock — Fort Worth, TX
Bobby P. Long — Houston, TX
Peter MacKenzie — Worthington, OH
Robert H. Marshall — Houston, TX
Brian F. Maxted — Dallas, TX
Christophe G. Mazzini — Dallas, TX
Wayne D. Miller — Midland, TX
James F. O'Connell — Amarillo, TX
John M. Rakowski — Florissant, CO
David L. Read — Highlands Ranch, CO

Roughneck – $250
Fred H. Behnken — Midland, TX
Arthur E. Berman — Sugar Land, TX
Paul W. Britt — Houston, TX
Garnet W. Brock — Midland, TX
James R. Cleveland — Dallas, TX
Wendell R. Creech — Midland, TX
Marlan W. Downey — Dallas, TX
Duncan D. Dubroff — Houston, TX
James P. Evans III — Franklin, LA
Robert B. Ferguson — San Juan Capistrano, CA
David R. Fox — Missouri City, TX
Roger A. Freidline — Midland, TX
William T. Goff III — Littleton, CO
Henry R. Hamman — Houston, TX
Stephen P. Hartzell — Houston, TX
Edward W. Heath — Durango, CO
Albert R. Hensley — Rockwall, TX
John D. Kullman — Midland, TX
Robert C. Leibrock — Fort Worth, TX
Bobby P. Long — Houston, TX
Peter MacKenzie — Worthington, OH
Robert H. Marshall — Houston, TX
Brian F. Maxted — Dallas, TX
Christophe G. Mazzini — Dallas, TX
Wayne D. Miller — Midland, TX
James F. O'Connell — Amarillo, TX
John M. Rakowski — Florissant, CO
David L. Read — Highlands Ranch, CO

(Continued)
Access SIPES Online!

Go to http://www.sipes.org/ and click “Login” under “SIPES Members.”

You may pay your National Dues and set up your account and password. If you’ve already paid your national fees for 2015-2016, please contact the SIPES Headquarters Office in Dallas to create your account. Email sipes@sipes.org or call 214-363-1780.

Registered members gain access to:
• SIPES Foundation Streaming Film Library with free viewing
• PDF Membership Directory
• SIPES Quarterly Issues from 2003 Forward
• And More!
one year and the beginning of the next. New board members and officers will now carry SIPES through 2015-2016. I am truly looking forward to my term as SIPES President, and I want to thank Past President Ralph Daigle, all of the previous year’s officers and directors, and the SIPES National staff for handing over the reins with the society in such wonderful condition.

The year ahead will undoubtedly be a difficult one. Falling commodity prices have left our industry in dire straits. But, as one of my closest friends always says during difficult times, “What’s good about this that we have not yet realized?” Hard times always hide great opportunities. What seem to be difficult circumstances now can motivate us to create business innovations and new scientific and engineering breakthroughs that will allow us to weather the current economic doldrums and stand us in good stead when energy prices return to more reasonable levels – hopefully sooner than later! Many of our older members can certainly testify to these facts. More than a few of us became independents during similar downturns in the past. I certainly can attest to the fact that my arrival into the ranks of oil and gas independence came at just such a time in the early ‘90s.

The upcoming year for SIPES will also bring potential changes. The SIPES National Board of Directors will address several issues. These will include improvements in communication between the national organization and our local chapters, clarification of Junior Membership requirements, possible establishment of a royalty fund through which members can contribute to the ongoing and future needs of the society, and the establishment of our new online video library of archived technical presentations. Other projects include ongoing efforts to reestablish the local SIPES Chapter in Wichita, Kansas.

As always, membership maintenance and recruitment issues are ever present. Maintaining the integrity of our membership body is of utmost importance. As our older members retire we are ever mindful of bringing new, qualified earth scientists into the SIPES family. Our obligation to the Society’s founding principles, to our predecessors, and to the professional organizations with which we share membership reciprocity requires us to keep our standards high. Having served as membership chairman for both the local Midland Chapter and the SIPES National Board makes this a topic close to my heart.

Next year’s national convention is seemingly just around the corner and Diane Finstrom and the National office staff in Dallas will be working in conjunction with the Oklahoma City SIPES Chapter to plan and organize next summer’s 2016 convention in San Diego, California. The southern California weather and San Diego’s famous nightlife should make it another memorable convention location.

Cross your fingers…If it is anything like the wonderful meeting we just enjoyed in Utah in June, we will be in tall cotton again!

Best Regards,

D. Craig Smith

Congratulations to the
SIPES Foundation 2015 No Hassle Raffle Winners

1st Prize — $500
Pete J. Klentos, #597
Lafayette, Louisiana

2nd Prize — $250
Lindsey Melzer
Midland, Texas
Lawrence W. Staub, #1564
Richardson, Texas

3rd Prize — $100
James B. Bennett, #1709
Houston, Texas
Edward K. David, #2269
Roswell, New Mexico
William S. McAlister, Jr., #2090
Lafayette, Louisiana
Suzanne M. Rogers, #2729
Edmond, Oklahoma
SAN ANTONIO

The San Antonio Chapter enjoyed a busy and productive quarter while also getting a break from the drought that has affected this region for the last several years. The grass is green and the rivers and reservoirs are recovering.

Due to conflicts the April meeting was cancelled.

Highlights for the quarter included a talk at our May chapter meeting on global climatic change by Jim Winterle, P.G., of the Edwards Aquifer Authority. As professional naturalists, we are all concerned about the environment. As earth scientists, we all know and have studied drastic variations to the Earth’s environment long before the age of man. Separating the facts from the hypothesis is of utmost importance. The speaker provided a synopsis of the updates to the research being done on global climate change. The data obtained over the last several years although showing an upward trend, was often contradictory and when examined in greater detail seemed to show that local climate conditions are often different from those predicted for the global climate. Several questions were fielded on the causes and effects of global warming, and the discussion was interesting and revealing.

Have you ever been confused with the results of a well test as compared to what the core report said? Can grain density be used as a substitute for log density? Is grain density the same as log density? At the June meeting, Core Labs speaker, Tom Swisher, did an excellent job in trying to educate us on those and many other subtleties of modern core analysis. The talk covered both conventional and newer methods of measuring permeability, including Dean Stark saturations and the advantages and disadvantages of each method. Klinkenberg permeability was described, and measurements of permeability using percussion sidewall were presented. How are the measurements affected by clay matrix, clay bound water, capillary bound water, movable water? How does porosity measured by density log, or NMR or core relate? How are they different? “Routine” methods of measuring porosity were also presented with information on the conditions that affect subsurface porosity. Core Labs graciously supplied a copy of the presentation which can be obtained by contacting Jerry Witte, chapter chairman, at 717witte@sbcglobal.net.

The San Antonio Chapter collaborated with the Austin Chapter in co-hosting the SIPES 52nd Annual Meeting and 2015 Convention in Deer Valley, Utah. Two of our members, Donna Balin, #2606, with Altuda Energy, and Tom Ewing, #1610, with Frontera Exploration Consultants, were convention co-chairs. They were responsible for planning the technical program, along with obtaining speakers/leaders for the Foundation seminar, awards banquet, and post-convention field trip. Additionally, Tom Ewing, and fellow San Antonio Chapter Limited Member, Lee Billingsley of Abraxas Petroleum, gave technical presentations at the convention.

Enjoying the SIPES Cornerstone Party during the 2015 Convention in Deer Valley, Utah are, L to R seated, Kyong and Doug Draves, and Stewart and Anne Chuber. L to R standing are Tom Ewing, Donna Balin and Andrew Scott.

June guest speaker Tom Swisher from Core Laboratories.

Lee Billingsley of Abraxas Petroleum speaking at the SIPES 2015 Convention in Deer Valley, Utah.

Jerry Witte
Chairman
AUSTIN

The Austin Chapter’s regular lunch meeting is held the first Thursday of the month at the County Line on the Hill Restaurant from October through May. In April the Austin Chapter hosted a very well-attended joint meeting with SPEE (Society of Petroleum Evaluation Engineers). The speaker was Michael Snell with Ryder Scott. Mr. Snell discussed reservoir evaluations of the Eagle Ford Shale. The talk contained a lot of information, and, as mentioned, was well attended.

At our May meeting, Tony Hauglum, #2807, owner of Riviera Exploration and a Corpus Christi SIPES Member, discussed Riviera Exploration’s South Eagle Ford project. The talk is a case study in how an independent, with some imagination and a lot of patience, can operate in an active resource play.

LAFFAYETTE

The Lafayette Chapter of SIPES holds its monthly meetings at the Petroleum Club of Lafayette, Louisiana on the second Wednesday of each month.

For the April meeting our attention focused on the prolific Atchafalaya Basin. The featured guest speaker was Don Haydel, Director – Atchafalaya Basin Program with the Louisiana Department of Natural Resources. The presentation focused on the historical aspects, present conditions, and the future of America’s largest river swamp. It is five times more productive than any other river basin in North America, and is probably the most productive swamp in the world.

Some interesting facts in the presentation were that:
- The Atchafalaya Basin, past and present, was/is – a former channel of the Mississippi River
- An ancient home to Native Americans
- An Incubator for Cajun culture and heritage
- A paradise for sportsmen
- A national treasure
- A producer of more than 2.5 million pounds of wild crawfish per year
- A former site of a giant Cypress forest
- An oil and gas resource area, and much more.

Mr. Haydel provided many reasons for us to appreciate and learn more about the natural bounty, beauty and contributions that the Atchafalaya Basin provides to its inhabitants and visitors.

The Lafayette Chapter held its 30th SIPES Sporting Clay Shoot and Steak Night on May 13. This event helps us to recruit new members, and this year’s attendance was one of our best ever. We had a great turnout for the clay shoot as well as the grilled steak dinner. Many thanks to John Duplantis, #2139, and his crew for staging this year-end event.

The Lafayette Chapter has no meetings from June through August. The fall program will begin on September 9th with John Foreman presenting on Oil & Gas Pricing/Possible Forecasting. For membership or Lafayette Chapter information contact Tom Poché, chairmain (tpoche@shelfenergy.com), or King Munson, secretary/treasurer (kingmunson@gmail.com). Have a great summer, but don’t forget to keep searching for more oil and gas.

Ward Davenport
Chairman

May lunch speaker Tony Hauglum of Riviera Exploration.

Secretary/Treasurer King Munson (left) awarding Don Haydel a speaker gift.

John Duplantis, Clay Shoot organizer.
CHAPTER NEWS CONTINUED

DALLAS

The Dallas Chapter meetings are normally the third Tuesday of the month at the Dallas Petroleum Club. Lindell Bridges of Pure Earth Resources gave a very interesting talk on “The Appalachian Basin, the shale capital of the world” at our April luncheon.

May was very busy with three events. The Dallas Chapter, with the hard work of David Shiels and the Trinity University Geosciences Department, hosted an overnight field trip on May 2-3 to the Texas Hill Country – highlights included a nice reception and tour of the impressive facilities at Trinity, Canyon Lake Gorge, Pedernales Falls State Park, Inks Lake State Park, the Enchanted Rock State Natural Area and a visit to a Hill County winery. Next, the Texas Energy Council Symposium, with an incredible cast of speakers/panelists, was held at the George Bush Library on May 7. Lastly, fun was had by all that attended our annual “Mexican Fiesta” on May 21 at Abuelo’s.

At our June luncheon, Brian Stump of SMU gave an informative presenta-

Texas Hill Country Field Trip attendees.

tion on the recent earthquake activity in the Dallas/Ft. Worth area.

No new members since last report.

John Stephens
Chairman

NEW ORLEANS

The April luncheon was held at Andrea’s Restaurant in Metairie. The speaker was Chapter Secretary Art Johnson, #3153, who presented “The Evolution of Geoscience Publishing,” describing his experiences in writing books and articles from the 1970s to the present. Forty years ago, geoscience publishing was pretty straightforward. Books and technical papers were typed, submitted, and mailed in to publishers and societies. Working with coauthors in other parts of the country (or the world) added months to the timeline, as did the process of peer review. Books and journals were printed and sent to individuals and libraries by mail. It often took years from the initiation of a book or article until the final product was in the hands of readers. The advent of electronic media has allowed the writing, editing, reviewing and printing processes to be dramatically shortened. Delivery to readers now takes many forms. Although rapid turnaround is possible, some geoscience organizations have fallen behind the times and have not set up internal processes for the rapid dissemination of ideas.

Since 2000, several publishers have gone to “print on demand,” where paperback books are printed as requested so that warehouses are no longer needed and costs are reduced. The advent of e-books has also made it possible to drive down costs, but many geologists strongly prefer a physical copy of books and journals. More recently, “open access” journals have emerged, in which papers are available free of charge to readers, but authors must pay publishing costs, often in the thousands of dollars. These journals are typically poorly written, poorly edited, and of little value for the geoscience community. The authors are often from locations such as China and India where a list of publications is necessary for promotion within universities and government agencies. As reputable publishers enter this market there is hope that the quality of the journals will improve.

Geoscience publishing continues to evolve. It is difficult to predict how technical information will be distributed in the decades to come; but the need to disseminate accurate, timely, and well-written articles and books will always be necessary.

(Continued)
The May 19th meeting was the annual dinner event and included spouses and guests. In recognition of the 40th anniversary of the discovery of the Tuscaloosa Trend, chapter member Carlo Christina, #1191, organized a great evening that included several special guests from the early days of the play. The guests included Gertrude Beauford, the historian of Pointe Coupee Parish. Ms. Beauford provided her 12-minute documentary on the Tuscaloosa Trend entitled “False River Gold.” The documentary noted that on May 23, 1975, Chevron completed the Alma Plantation #1 as the discovery well for False River Field. The well was completed flowing 20 million cubic feet of gas and 80 barrels of distillate per day, and was followed by extensive drilling across Louisiana. The documentary described how the production changed the lives of the people of Pointe Coupee Parish and described activities through 1998.

Following the documentary, Carlo gave a brief but informative presentation on the geology and production history of the trend and described activities from 1999 to 2015. Carlo was assisted by chapter member Eric Broadbridge, #2174.

Other special guests included Kathy Beauford (Gertrude’s sister), Anthony Lanson, and Larry Ringham. Carlo had been active in establishing the trend from the outset and Anthony Lanson had drafted the original maps on the Tuscaloosa. Larry Ringham was Carlo’s partner in C&R Exploration. Carlo created commemorative T-shirts for the event and these were given out to the chapter officers, special guests, and as door prizes.

Louis Lemarie’ will be continuing as chapter chairman, joined by Secretary Art Johnson, and Treasurer Roy Walther.

Art Johnson
Secretary

At the May Dinner are (L to R) Carlo Christina, Kathy Beauford, Gertrude Beauford, and Chapter Chairman Louis Lemarie’
OKLAHOMA CITY

The Oklahoma City Chapter of SIPES met for lunch on April 7 in the Petroleum Club for excellent food and an even better speaker. Michael Teague is serving as Oklahoma’s first secretary of Energy and Environment. Teague served in the U.S. Army for nearly thirty years before retiring with the rank of colonel. During his career, he served in many capacities including commander of the Tulsa district of the U.S Army Corps of Engineers. Teague has dealt with power generation and distribution, water desalination, and environmental impact studies both here and abroad. He was deployed several times to the Middle East and Central Asia, including commanding the 52nd Engineer Battalion in Mosul, Iraq as part of Operation Iraqi Freedom in 2003.

Michael Teague’s presentation was a discussion of the current state of studies being conducted by state authorities into the unusual occurrence of frequent earthquakes in parts of Oklahoma in recent years. The area getting the most attention right now is the large volume disposal wells. Many of these are disposing into the Arbuckle Formation, but it has been found that some of these wells had penetrated basement rock. A few wells have been tied directly to earthquakes, but the vast majority do not show a direct relationship to earthquake activity. He assured us that the work would continue in a workmanlike manner, considering all sides of the issue, and that actions would be taken based on scientific evidence. His presentation generated much discussion from SIPES members about the situation and even some suggestions that these studies could use the input of some of the geologists in attendance.

Our May meeting is usually a cook out. This year we scheduled the cook out for June 6. Our National Director Kirk Kolar, #3343, arranged for us to meet at the patio to the Trellis Restaurant at Rose Creek Golf Club. This turned out to be an excellent venue with good food, a cash bar, and great company. The weather cooperated and it was a beautiful evening on the patio. The menu consisted of smoked ribs, brisket, chicken, baked beans, corn, cookies and brownies.

Our chapter does not meet in the summer months, but we will be getting together again in September.

James Franks
Chairman

OKLAHOMA CITY CHAPTER NEWS CONTINUED

AUSTIN
Chairman: Ward Davenport
Secretary: TBA
Treasurer: Dwight Cassell
Meets: The County Line
(On the Hill) 1st Thursday

CORPUS CHRISTI
Chairman: Brian Calhoun
V-Chrmn: Tony Hauglum
Secretary: Dawn Bissell
Treasurer: Keith Baker
Meets: Ortiz Int’l. Center
Last Tuesday of month

DALLAS
Chairman: John Stephens
V-Chrmn: Pat Cox
Secretary: Neil Barman
Treasurer: Dallas Petroleum Club
Meets: Dallas Petroleum Club
3rd Tuesday

DENVER
Chairman: Tom Stander
V-Chrmn: James Mullarkey
Secretary: TBA
Treasurer: Mike Brondos
Meetings: Wynkoop Brewing Co.
4th Thursday

HOUSTON
Chairman: Jay Moffitt
V-Chrmn: James Mertz
Secretary: Russell Hamman
Treasurer: Bill Smith
Meets: Petroleum Club
3rd Thursday

LAIFAYETTE
Chairman: Tom Poché
V-Chrmn: TBA
Secretary: King Munson
Treasurer: Petroleum Club
2nd Wednesday

MIDLAND
Chairman: Wendell Creech
V-Chrmn: Roger Freidline
Secretary: Bill Mueller
Treasurer: Fred Behnkken
Meets: Midland Country Club
3rd Wednesday

NEW ORLEANS
Chairman: Louis Lemarié
V-Chrmn: TBA
Secretary: Art Johnson
Treasurer: Roy Walther
Meetings: Andrea’s Restaurant
3rd Tuesday

OKLAHOMA CITY
Chairman: Jim Franks
V-Chrmn: Greg Riepl
Secretary: Mike Pollok
Treasurer: Terry Hollrah
Meetings: The Petroleum Club
Chase Tower, 35th Floor
1st Wednesday

SAN ANTONIO
Chairman: Jerry Witte
V-Chrmn: Lee Billingsley
Secretary: Doug McGookey
Treasurer: Tim McGovern
Meetings: Petroleum Club
3rd Thursday
FORT WORTH

The April meeting of the Fort Worth SIPES Chapter was held at the Petroleum Club of Fort Worth with fifty members and guests attending. David Hayes, managing director of Natural Gas Partners in Irving, spoke on "Financing Start-Ups: Process, Risks, & Rewards."

David pointed out that on the equity side, they look for passion on the part of the potential partner, how the goals/expertise of the parties align (e.g., a serious business proposal vs. wanting to fund "just a hobby"), the appetite for risks (risks are shared...), and business judgment (which includes solid personnel already in place). The general goal on the funding side is to make two to four times the investment; the shared general goal of all parties is to make money. He alluded to the idea that the more experience people who are moving a startup forward get, the more removed they become from the asset (the money-making part of the business) as it becomes successful.

Our May meeting was also held at the Petroleum Club of Fort Worth with sixteen members and guests attending for the annual free-for-all. Chapter Affiliate Dave Koger presented his latest work in remote sensing and airphoto analysis. Recent work that he could reveal was photogeology and updated mapping in Paraguay; a survey of new sensors available for civilian use, and expert witness to locate the origin of wildfires — what was destroyed, and who was at fault — and to map trees that were harvested off the wrong land. Airphoto analysis showed that a house that fell into Lake Whitney was overloading the cliff face, and was not a geologic fault. Satellite data revealed that the canal through Nicaragua that was started in January was not started in January, and water exploration in Costa Rica.

Wayne Hoskins described two case studies, where MapSnapper tested the use of ground penetrating radar (GPR) to locate oil and gas field infrastructure. The first case was a seismic hazard survey that required mapping old pipelines in a fifty-year-old waterflood that predated any of the active personnel by twenty years. The pipelines were poorly marked and made of Transite, metal, polypipe, fiberglass, and PVC. Very few of the lines were detectable using a magnetometer. The operator had sketch maps of the field that were good for inventory purposes only. The first GPR was the traditional "lawn mower" type with a few inches of ground clearance that proved difficult to handle cross country. Another model was identified that had a larger ground clearance and wasn’t conducive to brushy areas or relief.

A third model was released by the military this year that combines magnetometer, sonar, and GPR in a hand held unit that was used in the second case study. The operator needed to identify the infrastructure for construction of new pad sites. The combination technique easily identified the signature for each of the lines and tracked them through heavy vegetation.

The Fort Worth Chapter does not meet from June through August.

John Tittl
Secretary
CORPUS CHRISTI

Our April speaker was H. Scott Taylor from Branscomb PC of Corpus Christi, Texas. Scott’s topic was titled “The Three P’s.” He discussed Perpetuation (of leases), Payout (accounting practices), and Passage (of legislation pending in the current session).

Scott talked about several lease scenarios where activities would indicate that the lease terms were met and the lease was Perpetuated. But when the actual lease language was examined closely, all of the leases had been lost.

He then discussed Payout of lease terms and again, how close examination of the original language revealed a different reality than initially understood.

Finally, Scott mentioned several pending bills before the current Texas Legislature and the likely Passage of those bills. Of three bills relating to the oil and gas industry that have been filed this session, the most likely to pass is HB40/SB1165. It addresses the municipal regulation of fracturing activities (also known as the ‘anti-Denton’ bill). It basically says that the state, and not municipalities have exclusive jurisdiction over oil and gas activities. (This bill was passed, effective immediately on May 18, 2015.)

Our speaker for May was Scott Pollard, #3332, of R. Scott Pollard, Scouting and Geological Services, San Antonio Texas. His talk centered on how activity has changed since the first quarter of 2014 and the peak of Eagle Ford activity around 2011. He also discussed activity in the Permian Basin and other Texas plays. Some of Scott’s most salient points are cited below:

- The onshore rig count has dropped from 1930 on 1/24/14 to 900 rigs as of 5/15/15.
- The Eagle Ford count has dropped from roughly 200 in 2011 to about 100 rigs today. The Eagle Ford decline seems to have leveled out over the last month.
- The Wolfcamp is the hottest play in the Permian. Wolfcamp drilling peaked at about 210 rigs in 2014 and currently stands at about 110 rigs. Scott opined that the activity is higher because the play is newer than the Eagle Ford, and acreage control is not as well established.
- The Wolfberry peaked at 212 rigs in 2012 and is now down to less than 50 rigs.
- The Haynesville and Bossier peaked in 2010 at about 180 rigs and now has less than 20 active rigs.
- The Barnett is down to 4 rigs.
- Dewitt County has the best Eagle Ford wells. The next best counties are Karnes, Live Oak and Gonzales in that order. Forty of the top 50 wells are in Dewitt County.
- The Eagle Ford “sweet spots” are now mostly defined.
- Many still do not recognize that the unconventional well decline curves are typically 65% or more. When drilling stops, production drops quickly.
- Overall unconventional drilling and completions costs are down about 30%. However, frac costs have only dropped about 15%.

Scott also identified several outstanding wells drilled in the last several years, the best being a Sligo test by Newfield in Live Oak County. This well has produced over 23 BCFG and is still producing over 7.5 MMCFG per day. When asked, Scott said that he did believe that activity in the unconventional plays will improve with increased prices, but will probably not return to the frenzy of recent years. He said the hype on Wall Street is gone. He did expect to see oil prices in the $75/BO range by the end of the year.

Best Quote heard recently and shared by Scott: “The market can remain irrational longer than you can remain solvent.”

Due to a last minute issue with the luncheon venue, our June meeting was cancelled. We resumed our technical meetings on July 28th at the Ortiz International Center, 402 Harbor Drive – under the Harbor Bridge – in Corpus Christi.

Dawn Bissell, Secretary
David Desenberg, Past Chairman
MIDLAND

Our April speaker was Chris Menefee, vice president of business development for Independence Contract Drilling. His talk was entitled “Advances in horizontal shale drilling, insights from contract drilling.”

Mr. Menefee, a native of Midland, began his oilfield career in 1997 working offshore as a roustabout for Rowan Companies, Inc. Mr. Menefee transferred to Rowan’s U.S. Onshore Division in 2002 where he held multiple field and management responsibilities. Mr. Menefee joined Rowan’s corporate marketing department and later served as director of marketing. Mr. Menefee departed Rowan Companies in 2012 to assist with the start-up of Independence Contract Drilling, Inc. (NYSE: ICD), where he currently serves as the vice president of business development. Mr. Menefee has eighteen years of experience in the contract drilling business with a focus on domestic and international operations, health, safety and business development. Mr. Menefee holds a B.A. in psychology from The University of Mississippi in Oxford.

His talk included information on the following subjects:

• Advances in Horizontal Shale Drilling, from a Contract Drilling Perspective (Vertical to Horizontal, Multi-Well Pad Drilling)

• Operational focus on HSE, reducing NPT, maintenance and support strategies

• Market Outlook for U.S. Land Drilling and Service Equipment

• U.S. Shale Oil impact on World Supply and Demand

In May, our speaker was Harry T. “Bud” Holzman, Jr., a consultant at Thunder Exploration in San Antonio. The title of his talk was “Iraq Oil Potential.” A native Texan who grew up in La Mesa, California, Holzman left college to join the U.S. Marines in 1966 and later transferred to the Army to become a helicopter pilot, serving in Vietnam where he flew Huey helicopters and gunships. After graduating from Trinity University in 1974, he went to work for Geomap as a geologist and stayed with that company for the next twenty-six years, where he eventually became its president.

He currently works as a geological consultant for Thunder Exploration in San Antonio, Texas and is the president of the South Texas Geological Society.

Iraq ranks right up at the top of hydrocarbon-rich countries worldwide with the potential to overtake any country in production. Out of approximately 89 major fields discovered to date, only 29 are producing. The others never really produced at all, yet some of these are classified as super-giant, each with over 12 billion barrels of proved reserves.

After reviewing data for numerous fields and conferring with Iraqi engineers, he concluded the total amount of oil and natural gas reserves in Iraq had been vastly underestimated. He estimated with the data he had that there were 230 billion barrels for the 84 fields at the time. Since then there are a few new fields recently discovered (9-14 BBO—9 TCFG) in the Kurdish region. He started looking at natural gas reserves, especially Akkas field in the Western Desert and unexplored regions of Kurdistan, and calculated almost 200-plus trillion cubic feet (TCFG) of reserves. Other geologists put the figure closer to 350 TCFG. Most of the current gas is being flared off.

If Iraq gets its act together with a good hydrocarbon law, defeats the militants in the central and northwestern section of their country, and brings in the service companies to repair the infrastructure, there’s no reason why the country couldn’t overtake any place in the world in production.

Our June speaker was Valentina Vallega. Her talk was entitled “Borehole Images: From Acquisition to Applications.” Valentina is a geologist working for Schlumberger. She is originally from Genoa, Italy, where she obtained her master’s degree in geological science with thesis work in the highly metamorphic area of Golfo Aranci, Sardinia, working on microstructural analysis to understand various phases of deformation. She obtained her master’s degree in July 2000 and joined Schlumberger in February 2001 as a wireline field engineer based in Aberdeen, Scotland.

In her current role she processes and interprets borehole images acquired in the Permian Basin with expertise in various applications of borehole images: from fracture analysis to dual porosity distribution in carbonate reservoirs, to sand body geometry and orientation in channelized sand deposits.

Borehole imagers have been part of logging services since early 1990 and many images have been acquired since then. With an increase in the (Continued)
data acquisition, an expansion in the applications of these data has followed.

Borehole images are extremely valuable data as they represent the closest comparison to an outcrop or core that can be acquired in a borehole.

Interpretation workflows associated to these data, provide high level and high resolution details which turns into an increase in predictability of subsurface models. Borehole images and Dipmeter data can be utilized for a detailed structural analysis of the borehole, they can highlight the presence of fractures, they are used to analyze porosity partitioning in heterogeneous carbonate formations, they help in determining in situ stress orientation with the identification of drilling induced fractures and borehole breakouts and can be the main data in facies analysis and sand body orientation studies.

Bill Mueller
Secretary

HOUSTON

The April luncheon speaker was Aislyn Barclay with Anadarko Petroleum. Her talk was titled “Subsurface Prediction of Fluvial Systems: Are Current Models Adequate?” Petroleum geologists often rely on depositional models based on modern system analogues to predict the distribution of reservoirs in the subsurface. Existing fluvial models are problematic for application in the subsurface because they are channel-focused, rather than basin-focused, and are based predominantly on modern fluvial systems in degradational regimes. Recent work suggests that foreland basins contain distributive fluvial systems rather than tributary fluvial systems, and undergo relatively systematic changes in fluvial style with distance from the fluvial apex. Refinement of the distributive fluvial model has resulted in increased recognition of these systems in the sedimentary record.

The Chinle Formation was deposited within a large backarc basin across southwest United States during the Late Triassic. It consists of paleosol-bearing alluvial strata whose characteristics vary markedly through the stratigraphic record. The study succession records a progressive up-section increase in grain size, increase in channel depth and width, and increase in lateral and vertical connectivity of channel deposits. Upsection changes in fluvial style result in greater porosities and represent more continuous and connected reservoir sand bodies.

Combining paleoclimatic data, fluvial architectural attributes, and petrology to better understand the depositional processes and forcing mechanisms that account for evolving fluvial deposition throughout the study interval helps to characterize fluvial system type.

Our May speaker was Cay Freihofer, a principal with Ridgemont Equity Partners. She spoke about “Private Equity Funding Criteria.” Navigating the process of mid-market buyouts has evolved along with our industry over the past fifteen years. However, one thing that remains a consistent need during interactions with private equity groups is a concrete plan and focus on details. The upstream private equity business began in the late 1980s. Around 2000, the average fund was $191 million and focused on conventional deals typically less than $25 million each. By 2006, the fund size average grew to $674 million and changed focus to unconventional deals. Since that time, funds have

(Continued)
grown to larger than $1 billion and individual deals within those funds now commonly exceed $100 million. This increase in both fund and individual deal size has resulted in more capital backing fewer management teams.

The process of seeking private equity funding has a number of variables. A signed letter of intent for an asset is a helpful and concrete step. Some capital providers and teams utilize the services of a merger and acquisitions advisor and both sides can benefit from the advisors input. The advisor can narrow the number of groups targeted since on average, there are between five and ten sponsors appropriate for each asset. One negative perception for capital providers is spending too long in the market. Between market entry and closing, the process should take less than six months to conclude. Intermediate steps include identifying potential sponsors, negotiating technical and financial terms and due diligence both on behalf of the provider and management team. Due diligence on behalf of the provider is obvious, but the management team should have some frank conversations with the management teams of other portfolio companies in the umbrella.

The group has defined benchmarks and financial structures. Their structure also targets a 50/50 blend of debt and equity. Upon exit, the management team is compensated with a waterfall arrangement based on performance metrics where higher returns lead to a greater percentage of proceeds to the team. Private equity terms are as varied as prospect sales terms, but certain things are memorialized in any agreement. Some private equity groups are very hands on when it comes to assets and others are just about the financial metrics. All PE assets will be sold, typically within 3-5 years, so the sale terms and revenue sharing need to be ironed out as well.

Ken Hooper of LaMesa Geophysical gave a talk entitled “Prospect-Focused Exploration Projects and Surveys” for our June luncheon. Prospect-focused seismic surveys are best utilized to reduce risk and capital expenses. The risk reduction comes from imaging your target, and the CAPEX reduction stems from the surveys smaller footprint relative to a traditional survey. La Mesa Geophysical was born out of efforts to image small (roughly 40 acre) reefs in the Caddo and Mississippian trends of North Texas for its then allied exploration company. The company received a big boost with the mid 2000s activity when operators wished to image their leases without tails to avoid sharing the data with offset lease holders. They use a small footprint, flexible crew to image typically stand alone conventional prospects.

The crux of their approach involves placing more receiver groups in the corners of the survey. These added receiver groups increase fold, offset and azimuthal distribution. The source utilized is a custom designed weight drop mounted on the back of a two-axle truck. This scalable source is limited to primary waves only. One interesting advantage of the weight drop is that the energy goes downward and ground roll is almost eliminated. A typical source station is 4-6 weight drops. Frequency content is up to 110 hertz usable in field records and up to 90 hertz in processed sections. The system can image targets between 1,000 and 10,000 feet below the ground surface and this target depth results in up to three seconds of record length. Ideal survey size is up to ten square miles. One example from the Batson Dome east of Houston demonstrates the company’s technique. The two square mile survey imaged the salt face from its horizontal near surface crest down to approximately 9,800 feet with steep dips. By virtue of the truck mounted system, the source points can be moved within parameters to follow roads, ridges and other features resulting in less line clearing which dramatically improves surface owner relations. The lightweight nature of the field system means that it is all easily moved to accommodate surface obstacles such as terrain, pits, wells and houses. We are all constrained by the laws of physics and seismic acquisition is not exempt; La Mesa Geophysical does not alter those physical realities but utilizes their approaches to work within them. This capable and modular seismic acquisition system could have a number of benefits for all cost conscious independent explorationists.

Russell Hamman
Secretary
Dear Lou-

RE- the matter of oil in Nevada, enclosed is a copy of three pages from my thesis on The Cephalopod Fauna of the White Pine Shale of Nevada (Note: Bruce Heezen was my field assistant- never did I think that kid would become a world famous ocean floor scientist, and eventually have a 330-foot naval research named for him -the BRUCE C. HEEZEN).

But back to the White Pine shale, I simply noted in passing that one could crack open cephalopods and find live oil in the cavities. At the time it never occurred to me that I had discovered oil in Nevada. That dawned on me several years later.

The thesis was published as an article in the May 1949 issue of the JOURNAL OF PALEONTOLOGY. I only got 50 reprints for it was a fairly expensive article with 9 plates. Being fresh out of grad school as Assist. Prof. at Univ. of Idaho, I didn't have much money for reprints.

Nothing much happened for a couple of years, and then, rather suddenly, I began receiving requests from oil companies for copies of my paper. I thought it rather odd that oil companies would have such an interest in cephalopods, but concluded that somehow I had inspired a great renaissance in cephalopod study. This as in 1952.

Apparently, one of the companies, Shell, decided to find the White Pine shale (Chainman member- the black shale with the oil-bearing cephalopods) at depth and moved south. And in 1954 drilled, and blundered into the Tertiary lacustrine Sheep Pass Formation, with its odd quality of oil (90 degree pour point as I recall).

What Shell expected would be the reservoir rock for the oil from the White Pine shale I don't know, as the underlying member of the Chainman is the Joanna Limestone, not very porous at least in outcrop, or the overlying Diamond Peak Quartzie- very tight!.

Best-

[Signature]

June 7, 2015
To follow is the paragraph from Walt’s paper (Youngquist, 1949) which describes the oil found in the goniatites:

Some parts of the White Pine shale exhibit small oil seeps, and layers of earthy bituminous material a foot or so thick occur in the formation in the upper part of Murphy Wash, in the southern portion of the Snake Range. Also, some of the goniatites of the White Pine shale in a northeastern spur of the Pancake Range are in part hollow and contain a dark petrolic liquid which flows freely when the specimens are broken.

The Pancake Range location: Sections 17 and 21, T13N-R55W, 2 to 3 miles north of Duckwater.

To date, nine oil fields have been found in Railroad Valley and are shown and summarized in Figures 1 and 2.

Brief summaries (previously published) of only the largest three fields — Eagle Springs, Trap Spring and Grant Canyon — are included in this paper. Field papers of most of the other fields have also been published (Schalla and Johnson, 1994).

REGIONAL GEOLOGY

Figure 3, is an east-west seismic section (Vreeland and Berrong, 1979) and best shows the structure of the Railroad Valley basin. A series of closely-spaced faults form the east flank of the basin which is less than a mile from the Grant Range. Down-to-the-basin faults are present on the west flank of the basin about five miles from the Pancake Range.
The sedimentary rocks found in Railroad Valley are:

- **Valley fill** — these are fluvial and lacustrine (playa) sediments that are over 9000 feet thick in the deeper parts of the basin. Many of these sediments are similar to the present day playa-alluvial fan deposits. The age of these Neogene sediments range from Recent to Upper Miocene — probably not older than 7.5 m.y. Unconformity “A” separates the Valley Fill from older Tertiary and Paleozoic rocks.

- **Oligocene Volcanic rocks** — these are mostly welded rhyolitic tuffs (ignimbrites) in the basin and in the adjacent ranges. The thickness of these rocks are up to 3000 feet in the adjacent ranges and in the basin. These volcanic rocks are the main oil reservoirs in the Trap Spring and Eagle Springs fields.

- **Eocene Sheep Pass formation** — is a sequence of non-marine sedimentary rocks confined to a local area in eastern Nevada. Lithologies found at various locations are conglomerate, lacustrine limestones, sandstones and shales. In a “deep” well east of Trap Spring field, the Sheep Pass is 828 feet thick. This formation is believed to have been deposited contemporaneously with the Green River, Flagstaff and Wasatch formations of Utah (Winfrey, 1960). Sheep Pass limestones are oil reservoirs in the Eagle Springs and Currant fields.

- **Paleozoic formations** — thick sequences of Pennsylvanian to Cambrian formations are present in the Grant Range and in the subsurface in the Railroad Valley basin. Primary lithologies are limestone, dolomite, black shale and minor sandstones. The best oil reservoir produces from the Devonian Simonson-Guilmette dolomite in the Grant Canyon field. The Pennsylvanian limestone is a small oil reservoir in the Eagle Springs field.

- **Late Cretaceous granite** — the Troy stock is exposed in the Grant Range (T6N-R57E) and has been penetrated in the subsurface in the Grant Canyon and Eagle Springs fields.

Table: Oil Field Summaries

<table>
<thead>
<tr>
<th>Oil Field</th>
<th>Discovered</th>
<th>Cumulative BO (To Feb. 2015)</th>
<th>Current BOPD (Feb. 2015)</th>
<th>Completed</th>
<th>Current</th>
<th>API</th>
<th>Average Cumulative Prod/Well BO</th>
<th>Producing Formation(s)</th>
<th>Gross Oil Column feet</th>
<th>Trap</th>
<th>Area Productive acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eagle Springs</td>
<td>1954</td>
<td>5,615,504</td>
<td>86</td>
<td>20</td>
<td>9</td>
<td>26 - 29</td>
<td>280,775</td>
<td>Oligocene volcanics Eocene Sheep Pass Ls. Penn Ely Ls.</td>
<td>1600</td>
<td>Truncated wedge</td>
<td>640</td>
</tr>
<tr>
<td>Trap Spring</td>
<td>1976</td>
<td>15,435,759</td>
<td>338</td>
<td>41</td>
<td>31</td>
<td>21.5</td>
<td>376,482</td>
<td>Oligocene volcanics</td>
<td>2100</td>
<td>Fault block</td>
<td>2440</td>
</tr>
<tr>
<td>Grant Canyon</td>
<td>1983</td>
<td>21,407,314</td>
<td>122</td>
<td>6</td>
<td>3</td>
<td>25 - 26</td>
<td>3,567,886</td>
<td>Devonian volcanics</td>
<td>950</td>
<td>Structural</td>
<td>300</td>
</tr>
<tr>
<td>Bacon Flat</td>
<td>1981</td>
<td>1,055,833</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>28</td>
<td>527,816</td>
<td>Devonian dolomite</td>
<td>450</td>
<td>Structural</td>
<td>80</td>
</tr>
<tr>
<td>Kate Spring</td>
<td>1986</td>
<td>2,514,570</td>
<td>75</td>
<td>6</td>
<td>4</td>
<td>10.7</td>
<td>419,095</td>
<td>Devonian carbonates Tertiary Horse Camp fm.</td>
<td>100</td>
<td>Unconformity / Structural</td>
<td>200</td>
</tr>
<tr>
<td>Sans Spring</td>
<td>1993</td>
<td>279,130</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>28</td>
<td>93,043</td>
<td>Oligocene volcanics</td>
<td>150</td>
<td>Fault block</td>
<td>160</td>
</tr>
<tr>
<td>Sand Dune</td>
<td>1998</td>
<td>166,736</td>
<td>21</td>
<td>1</td>
<td>1</td>
<td>?</td>
<td>166,736</td>
<td>Oligocene volcanics</td>
<td>?</td>
<td>?</td>
<td>40</td>
</tr>
<tr>
<td>Currant</td>
<td>1979</td>
<td>2,336</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9 - 14.1</td>
<td>2,336</td>
<td>Eocene Sheep Pass fm.</td>
<td>?</td>
<td>Structural (?)</td>
<td>40</td>
</tr>
<tr>
<td>Total</td>
<td>47,139,808</td>
<td></td>
<td>697</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field summaries - this paper Figure 2. Oil Field Summaries
EAGLE SPRINGS OIL FIELD (Bortz, 1994)

Geology

Exploration Method: Seismic
Type of Trap: Structural — Truncation
Producing Formations: Oligocene rhyolitic tuff (Garrett Ranch Group); Eocene Sheep Pass limestones; Pennsylvanian Ely limestone
Gross thickness of Reservoir Rocks: Zero to 1500 feet
Other significant shows: Valley fill, Mississippian Chainman, Cambrian

Discovery Well

Name: Shell Oil Company No. 1 Eagle Springs Unit
Location: E/2 NW/4 Sec. 35, T9N-R57E
Elevation (KB): 4,792 feet
Date of Completion: July 6, 1954
Total Depth: 10,358 feet
Production Casing: 7” at 6,450 feet
Perforations: Open-hole completion 6,450 to 6,730 feet
Stimulation: 2,000 gallons mud-acid wash
Initial Potential: Pumping 343 BOPD
Bottom Hole Pressure: 2,800 psi (90 minute shut-in pressure, drill stem test 6,453 to 6,533 feet)

Reservoir Data

Productive Area: Approximately 640 acres
Net pay: Up to 275 feet
Porosity: Volcanics 13.5%; Sheep Pass 16%
Permeability: Volcanics 10 md; Sheep Pass 4 md
Type of Drive: Water
Oil characteristics: 26° to 29° API, 1.7% sulfur; high pour-point (65° to 80° F)
Oil column: Over 1,600 feet
Oil/water contact: -2,000 feet (Main area)
Market outlets: Truck to refineries in Utah, Nevada and California
Oil Sources: Both Tertiary and Paleozoic
Production: 5,615,504 BO (February 2015)

Structure

Figure 4 is the structure map on Unconformity “A” which separates the Valley Fill from the underlying formations. Subcrops below the unconformity are Oligocene Volcanics (Tov), Eocene Sheep Pass Fm. (Tsp) and undifferentiated Paleozoic rocks (PAL). Note that two of the producing wells are in the “fault zone” which separates (Continued)
Figure 4. Structure map on unconformity ‘A’ with subcrops below Unconformity ‘A’, C.I. 100 feet. Lines of section A-A’ (Figure 5), B-B’ (Figure 6). Discovery well shown by circle around well symbol (Bortz, 1994).

Figure 5. North-south structural-stratigraphic section A-A’, see Figure 4 for line of section. Open boxes show perforated intervals (Bortz, 1994).

(Continued)
Figure 6. West-east structural-stratigraphic section B-B', see Figure 4 for line of section. Open boxes show perforated intervals (Bortz, 1994).

Figure 7. Induction and Microlog of Shell ESU No. 62-35.

Figure 8. Induction and Microlog of Western Oil Lands, Pennington-Federal No. 2-36.

(Continued)
the valley from the Grant Range. Figure 5 is a north-south cross-section within the main part of the field. The “PAL” within the Valley Fill is a “slide” block of Paleozoic rocks that slid off the Grant Range into Railroad Valley. Other similar slide blocks are common in this area.

Figure 6 is a west-east cross-section through the field. One well (#1-34) produces from a thin column of volcanic rocks in the western fault-block. In the main part of the field 13 wells produce from the Oligocene volcanic rocks (ignimbrites) and the Eocene Sheep Pass limestones. Two Sheep Pass wells produce in the eastern (“boundary”) fault zone. A strong soil gas anomaly was mapped in this fault zone. The Shell Eagle Springs #1 TD’d in Cretaceous granite. The Paleozoic section is thin, apparently because of a large “normal” fault that cut out part of the Mississippian shale and older Paleozoic rocks.

Reservoir Logs

Figures 7 and 8 show the log response in two field wells. Figure 7 has oil pay in the volcanic tuffs in the main part of the field. Over 100 feet of microlog porosity may be due more to fracture density than to matrix porosity. Figure 8 is a well in the “fault zone” that produces from the Sheep Pass limestones where microlog porosity is due to matrix porosity.

REFERENCES

$3,000 - $3,999
SIPES Midland Chapter Scholarship Endowment Fund
*
$2,000 - $2,999
Kenneth J. Huffman Scholarship Endowment Fund
George W. Todd Scholarship Endowment Fund
*
$1,000 - $1,999
William C. Burkett Scholarship Endowment Fund
Stewart Chuber
Marshall C. Crouch III Scholarship Endowment Fund
Ralph J. Daigle
Dennis M. Gleason
Walter S. Light, Jr. Scholarship Endowment Fund
Douglas H. McGinness II
Thomas A. Smith
Larry R. Wollschlager
Marvalene Speed Bennett & Carleton D. Speed, Jr. Fund
Mark A. Worthey Scholarship Endowment Fund
*
$600 - $699
Patrick A. Nye
*
$500 - $599
Robert M. Boling
William R. Finley Scholarship Endowment Fund
Earl E. Gaertner
In memory of John E. Scherer
Henry R. Hamman
John P. Moffitt Scholarship Endowment Fund
Michael A. Pollok
A. Scott Ritchie
Robert M. Wynne, Jr.
*
$400 - $499
John C. Worley
In memory of Bruce W. Fields
*
$300 - $399
James M. Grubb
In memory of Ross E. Davis, Jr. & Hardtner L. Coon
Larry J. Raiden Scholarship Endowment Fund
Julius M. Ridgway
*
$200 - $299
Robert W. Anderson
Fred H. Behnken Scholarship Endowment Fund
James B. Bennett
Marvalene Speed Bennett & Carleton D. Speed, Jr. Fund in honor of Donald C. Gifford & Diane M. Finstrom
Louis C. Bortz
Robert E. Boyer Scholarship Endowment Fund
Garnet W. Brock
Glenn P. Burle Scholarship Endowment Fund
George M. Carlstrom
Jack C. Cartwright
In memory of Johnnie B. Brown
James R. Cleveland
Rex D. Coppedge
Edward K. David
In honor of A. T. Carleton, Jr.
Roger A. Freidline
Jack S. Griggs
Scholarship Endowment Fund
Robert D. Gunn
Donald R. Hembre
Marc D. Maddox
In memory of Richard Grice
Bonnie L. Milne-Andrews
In memory of Geneos Kokinos
Lee M. Petersen
David M. Pulling
John M. Rakowski
Eddie W. Khea
Stephen R. Robichaud
In memory of Joe Keffler
Deborah K. Sacrey
In memory of Al Wadsworth
C. Ray Scurlock
Jeffry A. Smith Scholarship Endowment Fund
In memory of L. M. Denny & Johnnie B. Brown
William M. Smith
(Houston)
Scholarship Endowment Fund
C. Al Taylor, Jr.
Robert E. Tehan
Joe T. Vaughn Scholarship Endowment Fund
James M. Zotkiewicz
Scholarship Endowment Fund
*
$100 - $199
Alvin Belloire, Jr.
Raymond N. Blackhall
Foy W. Boyd, Jr.
John M. Bunch Scholarship Endowment Fund
Carlo C. Christina
James S. Classen Scholarship Endowment Fund
James W. Denny III
Rebecca L. Dodge
Duncan D. Duboff
Arlen L. Edgar
In memory of Johnnie B. Brown, L. M. Denny, Jr., Don D. Matson & Theodore N. Noel
Douglas R. Essler
James P. Evans III
Thomas E. Ewing
Cliff J. Fontenot Scholarship Endowment Fund
James A. Gibbs
Bill D. Graham Scholarship Endowment Fund
Peter G. Gray
Willard R. Green
David G. Griffin
Paul A. Hardwick
Edward F. Haye
Scott G. Heape
Bill E. Hogan Scholarship Endowment Fund
Alfred James III
Larry L. Jones
Peter J. Klintos
In memory of William H. Robbins
Kirk C. Kolar
William E. LaRoche
Richard R. Lindley
Donald J. Malone
Sally J. Meader-Roberts
Wayne D. Miller
James F. O’Connell
Charles A. O’Niell III Scholarship Endowment Fund
H. Rudy Parkison Scholarship Endowment Fund
H. W. Peace II
Elwin M. Peacock
Hugh C. Pendery
David C. Peterson
In memory of Greg Hummel
Edward B. Picou, Jr.
Robert E. Pledger
In memory of Edgar B. Krider
Cecil R. Rives
Richard H. Sams
In memory of Al Wadsworth & James O. Lewis
C. Randall Schott
Vinton H. Sholl
Eugene R. Sidwell
Daniel L. Smith
Joe H. Smith Scholarship Endowment Fund
in memory of Carl M. Padgett
Robert L. Smith
Stephen A. Sonnenberg
In memory of Frank P. Sonnenberg
Jack M. Thorson
William F. von Drehle
John R. von Netzer
Douglas B. Watkins
Robert E. Webster
Richard Willkerson
Ralph O. Wilson II
Marvalene Speed Bennett & Carleton D. Speed, Jr. Fund
Gerrit Wind
I. Wayne Woolsey
*
$50 - $99
Audrey W. Adams
Bruce M. Brady III
Ben Buongiorno
A. T. Carleton, Jr.
Robert A. Coolsey
Howard A. Creasey
William J. Furlong Scholarship Endowment Fund
Eduardo Gonzales Scholarship Endowment Fund
David R. Grogan
William S. Grubb
William R. Guiffey
Andrew Harper
B. Wayne Hoskins
William F. Howell
(Continued)
The SIPES Foundation gratefully accepts all donations and acknowledges these contributions with a letter. Due to limited space in the newsletter, we are unable to list gifts under $50.

The SIPES Foundation Video Film Library
New Titles From the 2015 SIPES Convention Available for Online Viewing

- Eagle Ford Development Case Study Utilizing 3D Seismic in a Structurally Complex Area, Atacosa County, Texas — by Lee Billingsley, LTD (San Antonio, Texas)
- The Discovery of the Eagle Ford Shale: Changing Paradigms in Unconventional Resource Plays — by Gregg Robertson (Corpus Christi, Texas)
- Applying Fundamentals “101” of Unconventional Shale Production to the Exploration and Development of the Wolfcamp “A,” Wolfcamp “B,” and Lower Spraberry Shale — A Case Study — by Keith Skaar (Midland, Texas)
- Finding New Oil and Gas Reserves in an Oil Field: Case Study from Wharton County, Texas — by Tom Ewing, #1610 (San Antonio, Texas)
- Foundered Shelf Edges — Seismic Expression of a Frio Example, Louisiana — by Tim Bennett, #3174 (Lafayette, Louisiana)
- “Owners of Oil” — Their Exploration and Discovery of a Vision — by Mike Oestmann, #3291 (Midland, Texas)

These and other new titles available at sipes.org now
SIPES Vision Statement

To be the pre-eminent organization for furthering the professional and business interests of independent practitioners of the earth sciences. In achieving this vision, emphasis will be placed on
(1) professional competence,
(2) professional business ethics, and
(3) presenting a favorable, credible and effective image of the Society.

Adopted by the SIPES Board of Directors
September 21, 1996